Module degann.networks.utils
Provide some helpful functions
Expand source code
"""
Provide some helpful functions
"""
import pickle
from typing import Tuple
import numpy as np
from degann.networks import imodel
def import_csv_table(path: str) -> np.ndarray:
"""
Import csv table as numpy array.
Parameters
----------
path: str
Path to csv table
Returns
-------
table: np.ndarray
Parsing result
"""
table = np.genfromtxt(path, delimiter=",")
return table
def export_csv_table(table: np.ndarray, path: str) -> None:
"""
Export numpy array to csv table.
Parameters
----------
table: np.ndarray
Table to export
path: str
Path to csv table
Returns
-------
None
"""
np.savetxt(path, table, delimiter=",")
def split_table_by_ans(
table: np.ndarray, len_answers=1
) -> Tuple[np.ndarray, np.ndarray]:
"""
Splitting the original table into tables of variables and answers by length of answer.
Parameters
----------
table: np.ndarray
Input table
len_answers: int
Amount of answer variables (in columns)
Returns
-------
tables: Tuple[np.ndarray, np.ndarray]
Pair of inputs and results tables
"""
x = table[:, :-len_answers]
y = table[:, -len_answers:]
return x, y
def split_table_by_inp(table: np.ndarray, len_input=1) -> Tuple[np.ndarray, np.ndarray]:
"""
Splitting the original table into tables of variables and answers by length of input.
Parameters
----------
table: np.ndarray
Input table
len_input: int
Amount of input variables (in columns)
Returns
-------
tables: Tuple[np.ndarray, np.ndarray]
Pair of inputs and results tables
"""
x = table[:, :len_input]
y = table[:, len_input:]
return x, y
def shuffle_table(table: np.ndarray) -> np.ndarray:
"""
For shuffling table.
Parameters
----------
table: np.ndarray
Table to be shuffled
Returns
-------
table: np.ndarray
Result of shuffle
"""
np.random.shuffle(table)
return table
Functions
def export_csv_table(table: numpy.ndarray, path: str) ‑> None
-
Export numpy array to csv table.
Parameters
table
:np.ndarray
- Table to export
path
:str
- Path to csv table
Returns
None
Expand source code
def export_csv_table(table: np.ndarray, path: str) -> None: """ Export numpy array to csv table. Parameters ---------- table: np.ndarray Table to export path: str Path to csv table Returns ------- None """ np.savetxt(path, table, delimiter=",")
def import_csv_table(path: str) ‑> numpy.ndarray
-
Import csv table as numpy array.
Parameters
path
:str
- Path to csv table
Returns
table
:np.ndarray
- Parsing result
Expand source code
def import_csv_table(path: str) -> np.ndarray: """ Import csv table as numpy array. Parameters ---------- path: str Path to csv table Returns ------- table: np.ndarray Parsing result """ table = np.genfromtxt(path, delimiter=",") return table
def shuffle_table(table: numpy.ndarray) ‑> numpy.ndarray
-
For shuffling table.
Parameters
table
:np.ndarray
- Table to be shuffled
Returns
table
:np.ndarray
- Result of shuffle
Expand source code
def shuffle_table(table: np.ndarray) -> np.ndarray: """ For shuffling table. Parameters ---------- table: np.ndarray Table to be shuffled Returns ------- table: np.ndarray Result of shuffle """ np.random.shuffle(table) return table
def split_table_by_ans(table: numpy.ndarray, len_answers=1) ‑> Tuple[numpy.ndarray, numpy.ndarray]
-
Splitting the original table into tables of variables and answers by length of answer.
Parameters
table
:np.ndarray
- Input table
len_answers
:int
- Amount of answer variables (in columns)
Returns
tables
:Tuple[np.ndarray, np.ndarray]
- Pair of inputs and results tables
Expand source code
def split_table_by_ans( table: np.ndarray, len_answers=1 ) -> Tuple[np.ndarray, np.ndarray]: """ Splitting the original table into tables of variables and answers by length of answer. Parameters ---------- table: np.ndarray Input table len_answers: int Amount of answer variables (in columns) Returns ------- tables: Tuple[np.ndarray, np.ndarray] Pair of inputs and results tables """ x = table[:, :-len_answers] y = table[:, -len_answers:] return x, y
def split_table_by_inp(table: numpy.ndarray, len_input=1) ‑> Tuple[numpy.ndarray, numpy.ndarray]
-
Splitting the original table into tables of variables and answers by length of input.
Parameters
table
:np.ndarray
- Input table
len_input
:int
- Amount of input variables (in columns)
Returns
tables
:Tuple[np.ndarray, np.ndarray]
- Pair of inputs and results tables
Expand source code
def split_table_by_inp(table: np.ndarray, len_input=1) -> Tuple[np.ndarray, np.ndarray]: """ Splitting the original table into tables of variables and answers by length of input. Parameters ---------- table: np.ndarray Input table len_input: int Amount of input variables (in columns) Returns ------- tables: Tuple[np.ndarray, np.ndarray] Pair of inputs and results tables """ x = table[:, :len_input] y = table[:, len_input:] return x, y