Module degann.networks.utils

Provide some helpful functions

Expand source code
"""
Provide some helpful functions
"""

import pickle
from typing import Tuple

import numpy as np

from degann.networks import imodel


def import_csv_table(path: str) -> np.ndarray:
    """
    Import csv table as numpy array.

    Parameters
    ----------
    path: str
        Path to csv table
    Returns
    -------
    table: np.ndarray
        Parsing result
    """
    table = np.genfromtxt(path, delimiter=",")
    return table


def export_csv_table(table: np.ndarray, path: str) -> None:
    """
    Export numpy array to csv table.

    Parameters
    ----------
    table: np.ndarray
        Table to export
    path: str
        Path to csv table
    Returns
    -------
    None
    """
    np.savetxt(path, table, delimiter=",")


def split_table_by_ans(
    table: np.ndarray, len_answers=1
) -> Tuple[np.ndarray, np.ndarray]:
    """
    Splitting the original table into tables of variables and answers by length of answer.

    Parameters
    ----------
    table: np.ndarray
        Input table
    len_answers: int
        Amount of answer variables (in columns)
    Returns
    -------
    tables: Tuple[np.ndarray, np.ndarray]
        Pair of inputs and results tables
    """
    x = table[:, :-len_answers]
    y = table[:, -len_answers:]
    return x, y


def split_table_by_inp(table: np.ndarray, len_input=1) -> Tuple[np.ndarray, np.ndarray]:
    """
    Splitting the original table into tables of variables and answers by length of input.

    Parameters
    ----------
    table: np.ndarray
        Input table
    len_input: int
        Amount of input variables (in columns)
    Returns
    -------
    tables: Tuple[np.ndarray, np.ndarray]
        Pair of inputs and results tables
    """
    x = table[:, :len_input]
    y = table[:, len_input:]
    return x, y


def shuffle_table(table: np.ndarray) -> np.ndarray:
    """
    For shuffling table.

    Parameters
    ----------
    table: np.ndarray
        Table to be shuffled
    Returns
    -------
    table: np.ndarray
        Result of shuffle
    """
    np.random.shuffle(table)
    return table

Functions

def export_csv_table(table: numpy.ndarray, path: str) ‑> None

Export numpy array to csv table.

Parameters

table : np.ndarray
Table to export
path : str
Path to csv table

Returns

None
 
Expand source code
def export_csv_table(table: np.ndarray, path: str) -> None:
    """
    Export numpy array to csv table.

    Parameters
    ----------
    table: np.ndarray
        Table to export
    path: str
        Path to csv table
    Returns
    -------
    None
    """
    np.savetxt(path, table, delimiter=",")
def import_csv_table(path: str) ‑> numpy.ndarray

Import csv table as numpy array.

Parameters

path : str
Path to csv table

Returns

table : np.ndarray
Parsing result
Expand source code
def import_csv_table(path: str) -> np.ndarray:
    """
    Import csv table as numpy array.

    Parameters
    ----------
    path: str
        Path to csv table
    Returns
    -------
    table: np.ndarray
        Parsing result
    """
    table = np.genfromtxt(path, delimiter=",")
    return table
def shuffle_table(table: numpy.ndarray) ‑> numpy.ndarray

For shuffling table.

Parameters

table : np.ndarray
Table to be shuffled

Returns

table : np.ndarray
Result of shuffle
Expand source code
def shuffle_table(table: np.ndarray) -> np.ndarray:
    """
    For shuffling table.

    Parameters
    ----------
    table: np.ndarray
        Table to be shuffled
    Returns
    -------
    table: np.ndarray
        Result of shuffle
    """
    np.random.shuffle(table)
    return table
def split_table_by_ans(table: numpy.ndarray, len_answers=1) ‑> Tuple[numpy.ndarray, numpy.ndarray]

Splitting the original table into tables of variables and answers by length of answer.

Parameters

table : np.ndarray
Input table
len_answers : int
Amount of answer variables (in columns)

Returns

tables : Tuple[np.ndarray, np.ndarray]
Pair of inputs and results tables
Expand source code
def split_table_by_ans(
    table: np.ndarray, len_answers=1
) -> Tuple[np.ndarray, np.ndarray]:
    """
    Splitting the original table into tables of variables and answers by length of answer.

    Parameters
    ----------
    table: np.ndarray
        Input table
    len_answers: int
        Amount of answer variables (in columns)
    Returns
    -------
    tables: Tuple[np.ndarray, np.ndarray]
        Pair of inputs and results tables
    """
    x = table[:, :-len_answers]
    y = table[:, -len_answers:]
    return x, y
def split_table_by_inp(table: numpy.ndarray, len_input=1) ‑> Tuple[numpy.ndarray, numpy.ndarray]

Splitting the original table into tables of variables and answers by length of input.

Parameters

table : np.ndarray
Input table
len_input : int
Amount of input variables (in columns)

Returns

tables : Tuple[np.ndarray, np.ndarray]
Pair of inputs and results tables
Expand source code
def split_table_by_inp(table: np.ndarray, len_input=1) -> Tuple[np.ndarray, np.ndarray]:
    """
    Splitting the original table into tables of variables and answers by length of input.

    Parameters
    ----------
    table: np.ndarray
        Input table
    len_input: int
        Amount of input variables (in columns)
    Returns
    -------
    tables: Tuple[np.ndarray, np.ndarray]
        Pair of inputs and results tables
    """
    x = table[:, :len_input]
    y = table[:, len_input:]
    return x, y